The Boolean function for shown in the F table below is most nearly:

ABCF
0001
0011
0101
0110
1001
1011
1100
1110

A.  $$barA+barB$$
B.  $$barBbarAbarC$$
C.  $$B+barAbarC$$
D.  $$barB+barAbarC$$

1 Answer

James Dowd

Updated on December 29th, 2020

To create a Boolean function from a truth table, we combine all of the expressions that output a value of F = 1. Since F= 1 is true 5 separate times, we'll start off with 5 expressions:

F = A'B'C' + A'B'C + A'BC' + AB'C' + AB'C

This is the base of our expression. Now, we are interested in applying theorems in order to simplify the Boolean expression in its most basic form.

First, if we take a look at our equations, it becomes clear that B' is present across 4 of them. In other words, for every combination of A, A', C, and C', if B' is present, the expression F will automatically be true. Factoring out the B' and applying the compliment rule:

Compliment Rule: A+A = 1 F = (A'B'C' + A'B'C + AB'C' + AB'C) + A'BC'  F = B'(A'C' + A'C + AC' + AC) + A'BC'  F = B' +A'BC'

We can then apply the absorption law to simplify our answer further:

Absorption Law: AB+A = B+A

F = B' +A'BC' F = B' + A'C'

This is the most simplified form of our Boolean expression. Therefore, our answer here is D.

Copyright © 2024 Savvy Engineer