A digital filter with input x[k] and output y[k] is described by the difference equation: 

$$y[k]=1/6(3x[k]+2x[k-1]+x[k-2])$$

The discrete-time transfer function of the filter H(z) is:

A.   $$(6z^2)/(3z^2+2z+1)$$
B.   $$(6z)/(3z^2+2z+1)$$
C.   $$3z^2+2z+1$$
D.   $$1/6[(3z^2+2z+1)/z^2]$$

 

1 Answer

James Dowd

Updated on January 3rd, 2021

In order to find the discrete-time transfer function from the difference equation, we must convert our function into the Z-domain using Z-transforms. Let's first move our 16 factor from the right side of the equal sign to the left before transforming our function:

y[k] = 16(3x[k]+2x[k-1]+x[k-2]) 6y[k]=3x[k]+2x[k-1]+x[k-2]

Now we are ready to convert to our Z domain. We will use the following three properties to do so:

Property #1: Z [y[n]] = Y(z) ORZ[x[n]] = X(z) Property #2: Z[ax[n]+b[y[n]] = aX(z) + bY(z) Property #3: Z[x[n-n0]] = z-n0X(z)

Using these three properties, let's now convert to the Z domain:

Z[6y[k]] = Z[3x[k]+2x[k-1]+x[k-2]] 6Y(z) = 3X(z) +2z-1X(z)+z-2X(z)

Since our transfer function, H(z) is as follows:

H(z) = Y(z)X(z)

Let's put our function in the Z domain into this form:

6Y(z) = 3X(z) +2z-1X(z)+z-2X(z) 6Y(z) = X(z)(3+2z-1+z-2) Y(z)X(z)=3+2z-1+z-26 H(z) = 3+2z-1+z-26

We can now multiply each side by z2z2 to eliminate our negative exponents and get our answer in its simplified form:

(z2z2)H(z) = 3+2z-1+z-26(z2z2) H(z) = 3z2+2z+16z2

This corresponds to answer choice D.

Copyright © 2024 Savvy Engineer